2012 (1)
2020 (65)
2021 (62)
对于MLPerf 感兴趣的网友,这个文章有点意思:
(MLPerf 是衡量一个CPU 的人工智能处理能力的一把尺子)
MLPerf 变得很小
作者:林利·格温纳普
MLCommons 继续修订和扩展其 AI 基准测试,现在提供专门为微控制器和超低功耗加速器设计的集合。这些简单的模型消耗不到 512KB,通常适合片上存储器。然而,一小部分初始提交强调了 TinyML 运动的一个局限性:大多数微控制器 CPU 对于 AI 并不是特别有效。
MLPerf Tiny 基准测试的初始版本,指定版本 0.5,包括四个测试,所有测试都代表低成本芯片经常处理的基本任务。一种是检测关键字,智能扬声器、智能手机和其他声控设备通常使用关键字来表示“Alexa”和“Hey Siri”等唤醒词。这个 DS-CNN 模型只需要 53KB。第二个执行视觉等效,检测一个人是否在图像中可见;它有助于门铃摄像头和占用检测。 325KB MobileNet 模型在低分辨率 96x96 像素图像上运行。
对于图像分类,基准测试包括一个只有 96KB 参数的简化 ResNet 模型。它使用 CIFAR-10 数据库将每个 32x32 的微小图像放入 10 个类别之一。最后的测试检测音频流中的异常。它模拟工业设备的监控并采用 270KB FC-AutoEncoder 模型。所有模型都使用 TensorFlow Lite 进行预训练并量化为 8 位整数 (INT8) 权重。