好文分享

希望把读到的好文章分享给每一个人
正文

数学到底是什么? (1) - Z. T. [教育与学术]

(2006-01-11 20:36:48) 下一个

数学到底是什么?很多人曾经尝试过,但没有一个人成功地定义了数学;永远有些定义未能
包含的东西。

粗略说来,人们认为数学处理数字和图形,处理模式、关系与运算,还认为数学涉及公理、
证明、引理和定理的形式化程序自阿基米德时代以来就从未改变过。人们还知道,数学的目
的是形成所有合理思想的基础。

有些人可能认为,是外部世界铸造了我们的思想——即人脑的运作——使之具有了现在称
之为逻辑的东西。另外一些人——诸如哲学家以及科学工作者——则认为,我们的逻辑思
维(思想过程?)是头脑自身工作的创造物,是通过进化独立于外部世界发展的结果。然
而,数学则显然是具有上述两方面内容的。 它似乎是描述外部世界的语言,但可能更适宜
用来分析我们自己。在从原始神经系统开始的进化过程中,人脑作为由上百亿神经元和为
数更多的元与元之间的连接所构成的组织,已然经历了很多变化和生长,而这些变化和生
长则是无数偶然事件的结果

数学本身的存在是由于这样的事实:存在有某些表述或者说定理,其陈述是简单的,而它们
的证明则需要很长的篇幅。 没有人知道为什么事情会是这样。许多数学表述的简单性既具
有美学价值,又具有哲学趣味。

在整个数学的成长中,美学方面一直具有绝对的重要性。一个定理是否有用并不十分要紧,
关键在于它是否精美与优雅。除了数学家,甚至在其他领域的科学工作者中,也几乎没有人
能够充分判断、欣赏数学的美学价值,然而,即使对于那些初入门的数学学徒而言,美的重
要性也是不可否认的。然而,我们可以反过来看看,是什么可以视为数学最一般的方面。这
最一般的特点就是它在作任何事情的时候必须小心谨慎,注意细节,对每一步骤都应确信无
疑。在数学中我们不能满足于粗线条涂抹,所有细致之处必须在适当时刻描绘。

庞卡莱(poincare)曾经说过:“数学是一种语言,我们不能用这种语言表达不精确或含混不
请的思想。”我想这段话出自很多年前他在圣路易斯博览会上关于世界科学的一次讲话。他
还给出了一个语言如何影响思想的例子,他感到当用英语代替法语时对事物的描述会如何不
同。

我倾向于赞同他的意见。显然,法语具有其他语言所没有的清晰性,我认为,清晰性造成了
数学与其他科学文献间的差别。思想可以被不同的方式所驾驭。在法语中,我想到的是对命
题的概括,促使我朝向明晰和简化。在英语中人们看到的是实际意义。而德语则倾向与使人
朝向不总是存在的深度思考。

在波兰和俄国,语言使其自身具有某种被酿造的意味,思想的发展像茶一样越来越浓。而斯
洛伐克语则倾向于是沉思的、超越物质的和可扩展的,其心理学意味强于其哲学意味。但是
斯洛伐克语并非含混不请,也不象德语有那样多的词汇,且词汇和音节连锁在一起。词汇和
音节也锁定了思想,而思想常常并不和语言一起展开。拉丁语又有所不同。它是有规律的,
永远是清晰的;词与词是分开的,不像在德语中那样胶结在一起;二者的关系如同蒸煮适当
与煮的过烂的米饭。

一般而言,我个人对语言的感觉是这样的:当我说德语时,我所说到的每一件事物似乎都被
夸张了,相反,在英语里,总感觉没有把意思表达充分。只有对法语而言,表达才似乎恰到
好处,波兰语也一样,因为它是我的母语,感觉特别自然。

一些法国数学家习惯于以一种更为流畅的,不表述太多确切定理的风格写作。这种方式比起
现在某些研究论文和书籍在每一页上充斥了大量符号和公式的风格更易于让人接受。当看到
只有公式和符号,几乎没有什么文字时,我就感到扫兴。对我而言,读这样的文章,而不知
道它要作什么,真是太累人了。我怀疑有多少数学家真正详细读过这样的作品而且欣赏它们。

然而,确实有一些重要的,艰涩且不优美的定理,例如某些与偏微分方程有关的工作,在形
式和风格上倾向于不那么漂亮,但是可能具有深度,而且其物理解释可以具有非常重要的意义。

今天,人们是如何进行价值判断的?

在某种意义上,数学家的任务是分析他们工作的起因和来源,然而,当他们认为自己的主要
职责是证明定理,而无须哪怕是在最低限度上指出这些定理为什么是重要的,那么他们实际
是在愚弄自己而且是玩忽职守。如果完全归结为美学原则,那不是把问题变得更加神秘了吗?

我相信,在未来的几十年中,甚至在形式化的高度,对美的程度都会有更多的理解, 虽然那
时标准会有变化,而且还将会出现在不可分析的高水平上的超级美的概念。迄今为止,对任
何试图精确地分析数学中美学原则的人,不管他们提出的是什么,似乎都过于狭窄了。它们
都必须求助于与外部世界其他理论的关联或者人类心智的发展史,甚至是纯粹美学的,或者
像音乐一样完全主观的。我确信,在一定程度上,至少利用形式化原则,利用类似思想的数
学化,音乐的质量也将是可分析的。

某些多年未能搞清楚的老问题正在被解决。某些问题的解决带来了巨大冲击,然而另外一些
问题的解决则可说是伴随着失望和啜泣。这一说法适用于诸多表面看来同等重要和有意思的
问题,然而其中的一些,甚至是一些著名的经典问题竟以如此特殊的方式被解决了,它使得
没有任何更多的东西可问可说。而另外一些不那么著名的问题一旦解决反而变成了引发好奇
和探索的源泉。它们似乎开辟了有前景的新领域。

至于说到论文的发表,今天数学家几乎是被迫把他们得到结果的途径隐藏起来。死于21岁的
年轻法国天才伽罗瓦(Evarist Galois)在使他丧命的决斗前的遗书中强调发现的过程如何
不同于最终表现在出版物中的证明过程。再次重申这一点是重要的。

就整体和主要发展线索而言,在那些仍然工作着的数学家中,对每个人的成就和新定理的价
值似乎确实存在着共识。因而,即使是数学家所主张的对美的感觉还不能定义,也必然有某
种客观性存在,有时也取决于在数学的其他分支或其他科学中,一项工作是否有用。为什么
在描述物理世界时,数学实际上如此适用,对我而言,至少在哲学上仍然是神秘的。Eugene
Wigner曾经写过一篇很吸引人的文章,论述数学看似“不合理”的有用性,题为“数学不合
理的有效性”。

当然,数学是一种表达所有合理思想的简洁方式。

在小学、初中和高中数学显然还具有训练思维的价值,正如其他游戏一样,练习会使器官更
敏锐。我说不出今天一个数学家的思维是否比起古希腊时期的数学家更敏锐;然而就更长的
进化时间而言,它应该如此。我确实相信,数学可能具有极大的遗传功能,它可能是少数能
使人脑完善的手段之一。如果确实如此,那么对于人类,不管就群体或个人是否会有新的命
运而言,没有任何其他东西比数学更重要了。数学也可能是使身体发育的一种方式,这里所
说的是解剖学上人脑中新连接的形成。虽然物质的巨大增生显示了一种走向衰老死亡的趋向,
这一点还是具有明确价值的。

每一种形式化方案,每一种算法,都在其中含有某种不可思议的神秘之处。在犹太法典(The
Jewish Talmud) 甚至在犹太神秘主义知识(Kabbalah)之中,都包含有一些对智力并不特
别具有启迪作用的材料,它们仅仅是语法或者食谱大全,有些或许是诗歌,而其他部分则是
不可解的神秘之物,所有的材料都是相当任意的。在过去很多世纪里,无数人的智力用于这
些作品的研读、记忆、剖析和分类。在做这些事情的时候,人们可能已经锻炼了他们的记忆
与演绎能力。正如我们可以在磨石上把刀磨利,人脑也可通过对枯燥单调事物的思考而变得
敏锐。任何一种坚毅、持续的思考形式都有它的价值。

在数学中存在有那样一些命题,诸如人们常常提到的所谓“Fermat大定理”,它长期没有解决,
且似乎是特殊的、与数论主体无关的问题。这些命题的表述十分简单,然而所有最聪明的头脑
试图证明它们的努力都遭到了失败。这样一些问题曾经激发了众多年轻心智(包括我自己在内)
的好奇心去进行更为一般的探索。至于Fermat 大定理,作为一个特定的、独立的问题,激励
了过去300年间的数学,引发了数学思想活跃的新课题的创立,特别是所谓的代数结构中的
“理想”理论。数学史中有许多这样的创造。

虚数和复数(它们是服从特定加法与乘法规则的一对实数)的发明超出了它们最初创立时的直
接用途和目的,开辟了新的可能性且导致了复变量众多奇妙性质的发现。从支配解析函数的少
数一般规则中,可以导出它们具有未曾期望的,简单然而又是事先未能预见的性质(解析函数
最简单的例子是 , e , z=log w)。解析函数有方便的算法,与几何对象的性质有深刻的联
系,而且涉及人们似乎是如此熟悉的自然数,即普通整数的奥秘。通过解析函数似乎某些支配
着我们思想的不可见的,不同的宇宙隐约地变得可以感知,这是一个服从某些规律的宇宙,其
中所发生的事件我们仅仅达到模糊地能够觉察的阶段。

某些似乎是很特殊的函数,例如黎曼Zeta函数与整数或素数的行为有如此深刻的联系是难以先
验地和深入地加以解释的。实际上即使到今天,这一点也还未能够被深刻地理解。无论如何,
最近这些实体,这些由无穷级数定义的特殊的解析函数已被推广于比复平面更为一般的空间,
诸如代数曲面。这些实体显示了似乎是不同概念间的联系。它们似乎也显示了(由课题本身暗
喻了)另外的现实曲面,另外的观念上的(与观念相关联的)黎曼面的存在,这些观念我们并
未自觉地领悟。

复变量解析函数的若干性质不仅仅是方便的,而且,在水力学理论中,在诸如水这样的不可压
流体运动的描述中,在电动力学和量子理论自身的基础中, 它们与事物的物理性质有根本性的
关系。

一般空间概念的创立确实来自于我们对物理空间的感知,但是,它并不是完全地或唯一地被这
一来源所指示和支配,对n维空间,此处n大于3,以至无限维空间的推广至少作为一种语言对于
基础物理本身是如此有用,这些都是人脑的奇异功能吗?或者它是将这些概念泄露给我们的物
理实在固有的属性?存在有不同程度或不同种类的无限性这一发明,或者说这一发现,对于那
些易于接受新思想的头脑而言,不仅仅具有哲学上的,而且还具有远在此之外的心理学上的巨
大影响。

谈到数学,当然还有其他科学,特别是物理学的惊人魅力和神秘吸引力时,一个值得注意的经
常发生的情况是,在象棋比赛中人们可以看到一个弱的甚至是初入门的棋手陷入了难解的复杂
迷人的棋局。我常常注视着业余棋手或者仅只是一些不具天才的初学者,看着他们走过十五步
的棋局,看到或许是由于偶然,达到了某种未经设计的,而对双方都充满了奇妙可能性的局面。
我想知道,在这些经验不足的棋手甚至尚未领悟到的情况下,这盘棋自身如何产生出如此引人
而又具有艺术魅力的局面。我不知道在围棋中是否可能有类似的情况。对于那一美丽游戏的复
杂性我知之不多,我自己无法判断,但是我很想知道,是否一个大师看到一个棋局时可以说出,
它是由偶然性造成的,还是由正确的,深思熟虑布子的逻辑发展结果。

在科学,特别是在数学中,某些算法似乎具有相似的不可思议的奇妙性质。即以其原来的形式,
其自身似乎具有某种力量产生出若干问题的解答或者是一系列新的展望。有些最初似乎仅仅是
为特定目的所设计的工具竟然能够具有许多未曾预见,未曾期望的新用途。

顺便提一下,有一个困扰我的不知如何解决的小小的哲学难题:考虑诸如solitaire这样的纸牌
游戏或者一种两个人玩的游戏。假设在游戏过程中,玩的人可以有一次或两次作弊。例如在玩
Canfield solitaire 时,如果玩牌的人有一次改变了一张或两张牌的位置且仅改变一次时,游
戏并不会被毁掉。它与原来的玩法尽管不同,但仍然是一个精确的、完整的、数学上有意义的
游戏,只不过变得更有趣一点,更一般一点。然而如果我们考虑一个数学系统,一个公理体系,
且允许添加一个或两个错误的命题,那么结果立刻变得毫无意义,这是因为一旦有了一个错误
命题,我们就可以随心所欲地导出任何想要的结果。二者之不同在于何处呢?它或许是这样的:
仅仅在游戏中某些类别的动作是允许的,而在数学中一旦一个不正确的命题被引入,我们可能
立即得到零等于一这样的命题。因而必须有一种方式推广数学游戏,使得我们能够不发生错误,
不陷入完全无意义的情况,而只是得到一个更一般的系统。

Hawkins和我曾经思索过下面的问题:它是游戏20个问题的一个变种。某人想定一个数,这个数
在一到一百万之间(它恰恰小于 2 )。另一个人允许提问最多20个问题,对每一问题第一个人
只回答是或否。显然,这个数可以按如下的提问方式猜出,首先问:这个数在一百万的前一半
吗?然后在下一次提问中把数的范围再缩小一半, 如此继续。最后这个数可以在小于log
(1,000,000)次提问中得到。现在假设允许回答者撒一次或两次谎,那么我们必须问多少个问题
才能得到正确答案?显然为了猜到2 中的一个数,我们需要超过n个问题,因为我们不知道回答
者何时撒谎。在一般情况下这一问题尚未解决。

在我论述尚未解决的问题的书中,我说过许多数学定理都能被payzised (这是一个希腊词,意
思是玩)。这就是说,它们可以用博弈论的语言来确切表述。例如,一个相当一般的博弈方式
可按下述方式建立:

假设N是一给定的整数,博弈的两个参加者要构造N个字母 (n , n , n ) 的两个置换,这两
个置换由两个参加者按下述方式轮流参与构造出来。对第一个置换,第一个参加者取n ,第二个
n ,第一个参加者再取n ,如此继续。最终第一个置换得到了。然后他们为第二个置换博弈。如
果两个置换可生成整个的置换群,则第一个参加者赢,否则第二个赢。谁能有一个赢得这一博弈
的策略?这仅

仅是一个小例子,说明在任何数学领域——在此是有限群理论, 我们如何可以发明一个类似的
博弈方式,它导致纯粹数学的问题与定理。

我们也可以问一些不同类型的问题:如果博弈是以随机方式进行的,那么偶然性是多少?这是一
个将测度论、概率与组合学结合起来的问题。在很多数学领域中,我们均可按此方式行事。

十九世纪接近结束时,集合论革命性地改变了数学。这一变革开始于康托 (Georeg. Cantor)证
明了(发现了)连续统是不可数的。在无穷逻辑的研究方面,外尔斯特拉斯(Weierstrass)和波
尔察诺 (Bolzano)的确是先行者,然而第一个对无穷基数的精确研究无疑是属于Cantor的。这起
源于他对三角级数的讨论,而且很快就改变了整个数学的风格和外貌。集合论的精神逐渐地扩展到
了整个数学;近来它更有了一个技术上未曾料到的具有青春活力的新发展,这一点不仅限于它最为
抽象的形式范围,同样也发生在它的直接应用之中。拓扑学与代数思想在它们最一般形式下的精确
表述从波兰学派(Polish school)的活动中得到了推力和方向,其中大部分来自于Lwow, 那里的
数学兴趣集中在结合了几何与代数思想的,粗略说来可称之为泛函分析的领域。

以下对波兰学派大部分活动的起源作一极度简化的描述:在康托和法兰西学派的数学家波雷尔
Borel),勒贝格(Lebesgue)和其他人之后,上述类型的研究在波兰安了家。费米(Laura Fermi
在他的杰出的移民(Illustrious Immigrants) 一书中,对大多数在美国的波兰数学家给予了极
度的赞扬,他们对这一领域的繁荣贡献了大量有意义的工作。很多人来到这里定居下来,继续这样
的工作。同时Hilbert和其他德国数学家的分析研究对无穷维泛函空间给出了一个简单的一般的数
学结构,它在此后的进一步发展也是由波兰学派作出的。莫尔(Moore)、维布伦 (Veblen)和在
美国的其他数学家同时的独立工作产生了代数与几何观点的交汇,以及仅在一定程度上可以肯定的
数学活动的统一。

尽管有日益增加的多样性和过分的专门化,数学研究课题的选择仍然遵循着从不同独立来源汇集到
一起的普遍的潮流,线索和趋势。

少数一些人利用不多几个新的定义确实能在某些特定领域的工作中引发一次雪崩。这可部分地归功
于教师们的绝对影响力所造成的时尚与自我永存(self-perpetuation)。当我初到美国时,对我
而言,似乎一切都夸大地集中在拓扑学上,这使我感到惊异。现在我感觉在代数几何领域的工作或
许是太多了。

哥德尔( Godel)的工作是第二个里程碑,近来科亨(Paul Cohen)的结果使其更为明确。哥德尔
是普林斯顿高等研究院的数理逻辑学家,他发现任何数学上的公理系统,即使是可数无穷的公理系
统,都允许我们确切地表述一些有意义的论断,然而在此系统中,它们是不可判定的——也就是说,
在此系统中,对这些论断的真理性我们既不能证明也不能证伪。 科亨则打开了通向整个一无穷公
理类的大门。现在已经有大量的结果说明我们对无穷的直观是不完全的。他们打开了我们直观中对
不同无限概念的神秘领域。这一点表明,数学并不象人们一贯相信的那样,它不是一个建立在一组
固定的,唯一给定的规律之上的完成了的实体,相反,它是在遗传中进化的。由此,上述发现对数
学哲学基础的改变也作出了间接贡献。上述观点至今还未被自觉接受,但是它指出了通向不同前景
的道路。数学实际将因无限概念而繁荣,谁能说出在今后五十年间我们对这一概念的态度将会发生
什么变化?肯定地说,将会出现某些东西——如果不是在现今词汇意义上的公理,至少是一些新规
则或者是数学家间关于新公设假定的一些协议,或者让我们干脆称之为形式化所必须的东西,它是
在给定了一个不可判定命题时,依据喜好其为真或伪而做的假设,表达了一种绝对的思想自由和构
造自由。实际上有些命题是否不可判定也可能是不可判定的。哲学上这将是极为有趣的。

对数学基础的兴趣在一定程度上也是一种哲学兴趣,虽然最终它象集合论一样,渗透到了一切之中。
然而“基础”一词是误用;就现时而言,它仅只是一个更数学化的, 诚然, 是基础性的专业。

对数学思想的起源与灵感之由来存在有两种分歧极大的意见,有一方面认为,它们是被外部现实,
即物理世界的影响所激发;另一方面认为是被生理学的发展进程,或许几乎完全是人脑的发展进程
所激发。在当前及不远将来的电子计算机的使用中,上述两方面以某种小的和特定的方式具有一相
似的图象。

即使把数学视作纯粹是人类心智创造物的最为理想化的观点也必须承认下述事实:几何定义与公理
的选择,事实上多数数学概念的选择,是通过我们的感官从外部刺激以及天然地从对“外部世界”
的观察与经验中所得到的印象之结果。例如,概率论是从与赌博的偶然性有关的少数几个问题发展
而来的。现在,为解决特定数学问题所建造的计算机使得我们能够在大得多的尺度上进行思维实验,
即理想化的实验以及展示我们更为抽象的思想模式。

有一些游戏模型,它们模拟了在活的有机体中通过化学反应产生的有生命物质的自组织行为。似乎
这些模型的实验将导致一些新的抽象的数学系统。(schemata)。新的,生长模式数学的研究,以
及利用计算机实验研究模拟了生存竞争的不同几何位形间的各种角逐方式进程的可能性,将可能引
发新的数学结构。我们可能再次将类似”payzonomy”的名字赋予彼此竞争着的不同作用方式的组合
学,将”auxology” 这样的名字赋予一个仍然有待发展的生长和组织的理论。后者最终将包括数学
自身的生长树。

迄今为止,对模拟几何生长的数学性质,仅只是提出了最简单和粗略的数学模式。(我自己的一些
简单模型的目录可在Arthur Burke最近编辑的书:元胞自动机理论(A Theory of Cellular Automata,
伊伊丽诺依(Illinois) 大学出版社出版中找到)

一个数论专家,英国数学家康维(John Conway)设计了一组特别精巧的规则. Conway的生命游戏
是游戏与消遣的一个例子,非常类似于最终导致了概率理论创立的过去的与骰子和纸牌有关的问题,
Conway的游戏可能导致一种宏大的新理论,这一理论描述怀特海在他的哲学中所研究的“过程”。

由此计算机的使用似乎不仅仅是方便,对于那样一些需要追踪极大的移动步数或阶段数极多的游戏或
竞争的实验,计算机绝对是本质的。我相信作为追踪这些过程行为的结果所获得的经验,对于最终可
能归纳出的无论何物都有基础性的影响,或许甚至可能替代数学中我们现存的,对形式化公理方法罕
有的沉溺。

上面已经提到了科亨和其他一些人最近的结果,这些结果论述了某些最基本的数学论断独立于传统的
公理体系,表明了实用方法的新作用。利用原胞自动机工作将有助于表明一个问题是否可被现存的工
具解决。

为了解释我们心中到底想的是什么,作为例子让我们考虑三维空间中一个“小小”的特殊问题:在空
间中给定了一条封闭曲线和一个给定形状的固体,问题是如何移动这物体使之穿过这曲线。没有明确
的数学原则来判断是否这件事能或不能完成。我们必须旋转、扭动、推挤,尝试着看看这件事能否作
到。在高维空间,例如五维空间中,我们可以提出类似问题。想法是把问题提在计算机上,实验各种
可能的运动。或许在经过多次尝试之后,我们能够获得在此高维空间中对此运动之自由的一些感性了
解,以及一种几乎可触及的新类型的直观。当然,这是一个小的不重要的例子,但是,我感到利用这
些新工具,特别是电子计算机进行适当的实验,建立和观察各种生长过程和进化发展,人们可能发展
新的想象力。

就我而言,看来电子计算机所造成的冲击和它的作用将极大地影响纯粹数学,正如它已经对数学科学,
以及主要地,对物理学、天文学和化学所做的那样。

这些对未来数学面貌猜测性的展望已使我们远离冯诺依曼(von Neumann)和他的同代人,以及它们
在前四分之一个世纪中对科学发展的作用。人脑中器官活性的增长速率无疑由计算机的发明所加速,
而且其增长似乎以某种方式预报了我们思想和生活方式中质的变化。正如波尔(Niels Bohr) 在他
一次有趣的谈话中所说的:“预报,特别是预报未来是很难的。”但是我认为数学的面貌将会有极大
的改变。某些极为不同的东西可能会发展起来,对公理化方法自身会有完全不同的观点。代替对现今
数目已达数百万之多的特殊定理的细致工作,,代替依据那些一经给定便永远给定了的符号的运算规
则进行思考,今后数学将可能由越来越多的问题,或者迫切需要之物,或者适用于一般性质工作的程
序所组成。将不再有大量的额外的特殊空间、特别定义的流形、或者这样那样的特殊映射,虽然它们
中的少数会保留下来:”apparent rari mantes in gurgite vasto,”不再有新的大量个别定理的汇
编,替代物是一些大定理,大课题的概要或轮廓,定理证明之外的实际工作将留给学生甚至是机器。
未来与现在数学的不同或许将变得可与印象派绘画与早期画出细节的绘画间的差异相比。它可能会更
生动具有更多的变化场景,这不仅仅表现在定义的选择上,同时也发生在游戏规则本身上。从古代至
今,这一伟大游戏的规则还从未改变过。

虽然规则从未变化,在我们一生之中数学的内容却已发生了极大的变化。在十九世纪,数学的应用完
全包含在物理学、天文学、化学、力学、工程和所有其他的技术领域。就近代而言,数学已用于表述
其他科学的基础,所谓的数学物理实际是整个物理的理论,已深入到像量子理论、奇异的四维时空连
续体这样最抽象的部分。这些明确地是属于二十世纪的。 在短短的六十到一百年间,数学思想的应
用令人难以置信地改变了它的扩展方式。可以说,这一扩展伴随着或大或小的新数学课题爆炸性地创
立,以及可以“导致死亡”的几乎像“犹太法典”一样的对增生的细枝末节的研究与吹毛求疵的研究
趋势。

不久前我在普林思顿冯诺依曼计算机建造二十五周年庆祝会上讲话时,突然开始在心中默默估计每年
要有多少定理在数学杂志上发表。(一个定理被定义为它是合理地以“定理”标识的且发表于公认的
数学杂志上。)我迅速地进行心算,令我感到有意思的是我能在谈着一些完全不相干的事情下做这件
事,而且得到了大约每年十万个定理这样的数字。我很快改变了话题,讲述了这一点,听众被吸引住
了。读者可能感兴趣的是,第二天听众中的两个青年数学家来告诉我,被前一天我所给出的巨大数字
所震动,他们在学院图书馆中进行了一次更为系统与细致的研究。将杂志数乘以每年出版的期数,再
乘以每期的文章数,最后乘以每篇文章的平均定理数,他们估计每年的定理数差不多有二十万。如此
大的数量肯定是一件应当考虑的事。如果我们相信数学更像游戏和字谜,那么有些事情是值得忧虑的。
显然危险在于数学本身将遭到被分裂为割裂的几门不同科学,分裂为一些独立的联系薄弱的科目之命
运。我个人希望这种情况不要发生。因为如果定理的数量大到超过一个人可能考察的,谁能可靠地判
断什么是“重要”的?问题变成了保存记录,以及已有结果的存储和重现。这已经变成了最重要的问
题;如果没有了相互交流,我们不可能最适当地生存下去。

甚至是最为卓越和激动人心的一些成果实际上也不可能保持齐头并进。我们如何把这一点与数学将作
为一门单一科学生存下来的观点相调和呢?正如我们不可能知道所有美丽的女性和所有美丽的艺术品,
但我们最终只和一位美丽的人结婚一样,我们可以说:在数学中,人们与其各自的小领域婚配。因此
在数学研究中的价值判断正在变得越来越困难,我们中的多数正在变成主要是技术人员。年轻科学家
们所研究课题的多样性呈指数增长。或许我们不应将其称之为思想污染,可能这只是产生了百万不同
昆虫物种的大自然之慷慨的一种表现。不论我们的感觉如何,上述变化是与人类的科学理念不相吻合
的,人类科学理念的目的在于理解、简化、概括,特别是发展一种适用于思维与自然现象的符号系统。
[ 打印 ]
阅读 ()评论 (0)
评论
目前还没有任何评论
登录后才可评论.