阎开始怪洗地的 - 相关博文: 颜自然论文全译; 大阎你越红线了
我说过大阎的争论中争不赢时就采取游击战术,为了争个赢,他会不顾事实,不讲道理,不断地转移焦点,不管是在政治辩论还是科学辩论时都是这样。在毁谤小颜不成后,阎开始攻击和自己观点不一样的人,说他们是为小颜洗地,原因就是在前面一个焦点,即“已发表的生化资料”没有引用文献的说法被攻破后 (见我翻译的小颜原文的图五的注解里给的文献28和29),只好再次转移一下焦点了。但是,这个也是没有用的。因为不管如何转移,都不能掩盖一个小颜没错,而他自己大错特错的事实。
大阎似乎忘了,挑起这场无谓的论战的是他自己,他的目的可能是想让大家都接受他的一面之词,即使不接受,也别出来指出他是错了。可是他忘了这世界上和这城里还有为真理,道义和良心而争的人,说和自己意见不同的人就是为小颜洗地是对这些人的最大侮辱,如果不知道这一点,不仅连起码的自由民主社会的常识都没有,还连基本的科学讨论的素养都没有。
大阎在新的一文里再次模糊概念,拿人家指出小颜研究的是人的GLUT1和他研究的细菌转运体是两码事,差了十万八千里这事说事。他说小颜在文里用了细菌XylE的结晶资料。意思就是说,既然她能够用 自己的细菌XylE的资料,那她为什么就不用他研究的那个细菌转运体的资料。
猛然一听似乎有理,其实不然。因为第一XylE是GLUT1在细菌里的同源物,而大阎研究的那个不是。搞生化的人都知道,同源物不仅功能类似,结构也很类似,就连其中的氨基酸不是相同,就是类似;第二,XylE不仅是同源物,而且有了结晶体的结构资料。小颜在文里明确地指出,“在这值得一提的是,在XylE和D-木糖或D-葡萄糖结合状态下的结构得到解析后,就有可能利用同源性去建立GLUT1的模型(参考文献28)。”“然后我们用XylE的N和C域的坐标为模型加上分子置换法确定了GLUT1的结构。”
大阎研究的那一个蛋白既不是同源体,又没有结构,和小颜研究的怎么不是相差十万八千里呢?
我注意到了他反复说的加州大学的Dr. Milton Saier, Jr. 提到的“The best characterized members of the family are UhpT and GlpT, both of E. coli, for which detailed topological models have been presented (29, 90, 91).。我们参与争论的人,尽管不同意大阎的观点,但并不是不承认他的工作的重要和贡献。但是,再大的发现,也要沾边,不沾边,相差十万八千里的东西,人家根本就不会引用,道理不是很简单吗?
大阎在文里还提到了华盛顿大学的Mike Muecklerz教授,说他引用了他的文章。你可能说Mike Muecklerz引用了他的,说明他的相关。但相关性是可以失效的,因为科技发展是日新月异的,如果老停留在一个地方,就会从相关变为不相关了。在Muecklerz教授发表文章的时候,对GLUT尚知之甚少,等小颜研究这个问题的时候,不仅有更多,而且有更好,更新,更相关的文献可引了。更好的和更新的文献出来就会让老的文献失去了相关性或吸引力。
就像一个人,在1993年的时候还年轻漂亮,到了2014年已经不再那样了,这个时候,回头率不高了,心里肯定会有失落感,可以理解,但是即使这样,也挡不住岁月的严酷和世俗的冷漠。 这个时候,你不能跑过去说人家为什么不回头看你一眼。 识趣的,就要知道岁月变了,美貌不再,别在那里想人家回头看你了。
科研成果也是这样的,即使在以前新的时候相关,过了一段时间后在更新的出来后就变得不再那么相关了。凡是发表过论文的人都知道,写文的时候要提供最新进展,最相关的资料,大阎也应该懂得这一点。如果知趣,就要知道岁月变了,那文不仅没有相关性,而且已经很旧了,别在那里怪人家没有引用你了,很丢人的。再说,如果大阎一再纠结”发表的生化资料“是不是他的,他大可向《自然》杂志询问。
其实,没有引用大阎的不只小颜一个,大多数人都没有引用。关键问题就是有没有相关性,在2014年研究GLUT成员的人都知道哪个相关,哪个不相关,没有相关的或者因为时间失去了相关性的,拿俗话说,就是相差了十万八千里。这个,一点错都没有。别想用你研究的那个蛋白和小颜在文中引用的XylE都是细菌的就来说都有相关,还要看是不是有同源性,有没有结构资料等因素来综合看相关性,不然,就是混淆视听。
还有,别把和你观点不同的人都说成是为小颜洗地的!如果你没错,小颜错了,我们这些人犯不着为小颜去争,这个道理不是很简单吗?我们之所以去争,是因为对你无缘无故地去毁谤一个无辜的同行不想视而不见。
不过,我注意到大阎在最新的这篇文里没有直接诬蔑小颜剽窃,这算是一个进步呢还是怕有法律后果呢? 就算是一个良心的认知,一个进步吧。所以要给你一个大shout:Good Job, Big Yan,keep it up!
本来觉得他那么早发了Cell, 结果一共就只两篇文章, 没有做PI, 很可惜. 经过这场争论明白了,一点也不可惜. 他的性格决定命运, 决定了他不是做学问的料.
也来这儿发发牢骚, 博主担当则个. 对阎我其实是一直手下留情的, 一是不positive二是不想花那么多时间. 但是阎粉的猖獗, 有时候真让人受不了, 把人逼急了下重手的节奏.
我以前在论坛胡说八道。结果,有一天不知道说了什么。反正也是一个老太太,可能不同意我说的。结果也是手里拎个棒槌。一边高喊着“打!”,一边乌拉乌拉。非常有画面感。这文学城,就是一个江湖。什么人都有。什么背景的人都有。我现在想起那个画面感,还想想笑。太好玩了。如果在现实中,这些人见了面,说不定都客客气气的。网上嘛,有各种真实,也有各种装。上网各有各的目的。
他那东西根本就是蒙骗群众。很多阎粉们基本上不懂。我发现那些以前支持他的人中那些懂一点或者有点良心的人基本上不怎么吭声了。:)
原来是这样。 我本来还是很敬重他的。 他昨天说我推理牵强,有逻辑错误,又不指出是哪儿出的问题,我还好好反省了半天呢。
大致看了一下那两篇文章,没有看出来那个找不到C265的地方。
回复 'SwiperTheFox' 的评论 :
你是典型的“王顾左右而言他”。你替她洗地得话越多,漏洞就越多。你说的几乎每句话在逻辑上都有问题。更是让人觉得你是个顽冥不化之人,所以不值得再回复你了,这叫话不投机半句多
===========================================================================
我的问题:
------------
审稿人是否可直接回答一下: Mueckler 2002到2009, 若干篇同样的工作,不再引阎有没有问题?
审稿人是科学认士,是否通读了颜三篇, 是否可以得出如阎所述"结果一样"的结论?
至于推掉院士的选择, 我相信大多数人不会这样做,这是颜宁的自由. 不推掉既守法也遵守道德标准,也不违反科学界的常规. 我不会对她的这个选择质疑.
是否有可能老阎找错了债主? 各位点评一下?
Huang Y, Lemieux MJ, Song J, Auer M, Wang DN. Structure and mechanism of the glycerol-3-
phosphate transporter from Escherichia coli. Science 2003;301:616–20. [PubMed: 12893936]
Published in final edited form as:
Mol Genet Metab. 2009 Jan; 96(1): 32–37.
Published online 2008 Nov 12. doi: 10.1016/j.ymgme.2008.10.00
Discussion
G6PT [9,14], GlpT [11], and UhpT [12] are members the organophosphate:Pi antiporter family of the major facilitator superfamily [10]. G6PT was shown to contain 10 transmembrane helices by protease protection and glycosylation scanning analysis [7]. However, recent homology modeling [19] based on the crystal structural of GlpT [17,18] predicts that G6PT contains 12 helices. Homology modeling [19] also proposes that amino acids essential for the activity of UhpT may play vital role in G6PT. In this study, we conducted structure-function studies of G6PT to determine if the predictions on which residues are critical for the activity of UhpT are pertinent to the structure of G6PT. We also re-examined the topology of G6PT. We show that structural requirements of G6PT and UhpT differ and that G6PT wild-type and glycosylation mutants exhibit similar sensitivity towards limited trypsin digestion. Taken together, the results support the 10 domain model of G6PT.
Both G6PT and UhpT are Pi-linked antiporters [13,14]. Mutagenesis studies have shown that in UhpT, R46, R275, D388 and K391 are essential residues [15,16]. R46 and R275 are proposed to be involved in substrate binding [15], and D388 and K391 in intrahelical salt bridge formation [16]. The corresponding residues in G6PT are R28, K240, H366, and V369. Homology modeling predicted that R28 and K240 in G6PT are 10.1 ? apart that could form part of the substrate-binding site [19]. We show that with the exception of R28 which is an essential residue in G6PT, K240, D388 and K391 are not, indicating that the structural requirements of G6PT and UhpT differed.
The main difference between the two topological models of G6PT is that residues 50 to 71, which constitute helix 2 in the 12-domain model [19], are situated in a 51-residue luminal loop 1 in the 10-domain model (Fig. 1). The glycosylation scanning study showed that the two G6PT mutants, T53N and S55N that generate potential glycosylation sites at N53SS and N55QS, respectively were utilized, which could only occur if the glycosylation sites were in the 51-residue luminal loop 1 in the 10-domain model [7] but not in helix-2 in the 12-domain model [19]. To explain the inconsistence to the 12-domain model G6PT, Almqvist et al [19] suggested that the two G6PT glycosylation mutants are probably misfolded in the ER membrane. Studies have shown that glycosylation of membrane proteins is critical for their membrane targeting and folding [27,28], and incorrect glycosylation can cause misfolding and preferential degradation of the misfolded proteins [29,30]. If the T53N and S55N mutants were misfolded in the ER membrane then they should exhibit differential stability and protease sensitivity as compared to the wild-type transporter. Our results show the contrary. First, the T53N and S55N mutants supported the synthesis of wild-type levels of G6PT protein in COS-1 cells, indicating that the mutations failed to destabilize mutant G6PT proteins. Secondly, limited trypsin digestion of wild-type G6PT produced an N-terminal polypeptide of 16-kDa and a C-terminal polypeptide of 22-kDa and limited trypsin digestion of G6PT T53N or S55N mutants produced an N-terminal polypeptide of 23-kDa and a C-terminal polypeptide of 22-kDa. However, in the presence of tunicamycin, limited trypsin digestion of G6PT S55N produced an N-terminal polypeptide of 16-kDa, indicating that the apparent difference in mobility between wild-type and mutant G6PT resulted from the added oligosaccharide side chains in the glycosylation mutants. Therefore, the introduced glycosylation site at either N53SS or N55QS in G6PT is utilized and the secondary structure of the glycosylated G6PT proteins is indistinguishable from the wild-type G6PT. Taken together, our data demonstrate that the glycosylation of G6PT does not cause G6PT to be misfolded in the ER membrane, again confirming the 10-transmembrane domain model of G6PT.
In summary, we demonstrate that the structural requirements of the two antiporters, G6PT and UhpT, are different and that G6PT is anchored in the ER by 10 transmembrane domains in contrast to the 12 domains used by UhpT.
References
1. Chou JY, Matern D, Mansfield BC, Chen YT. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr Mol Med. 2002;2:121–143. [PubMed] [Google Scholar]
2. Chou JY, Mansfield BC. Glucose-6-phosphate transporter: the key to glycogen storage disease type Ib. In: Broer S, Wagner CA, editors. Membrane Transporter Diseases. Kluwe Academic/Plenum Publishers; New York: 2003. pp. 191–205. [Google Scholar]
3. Shieh JJ, Pan CJ, Mansfield BC, Chou JY. Glucose-6-phosphate hydrolase, widely expressed outside the liver, can explain age-dependent resolution of hypoglycemia in glycogen storage disease type Ia. J Biol Chem. 2003;278:47098–47103. [PubMed] [Google Scholar]
4. Ghosh A, Shieh JJ, Pan CJ, Chou JY. Histidine-167 is the phosphate acceptor in glucose-6-phosphatase-β forming a phosphohistidine-enzyme intermediate during catalysis. J Biol Chem. 2004;279:12479–12483. [PubMed] [Google Scholar]
5. Cheung YY, Kim SY, Yiu WH, Pan CJ, Jun HS, Ruef RA, Lee EJ, Westphal H, Mansfield BC, Chou JY. Impaired neutrophil activity and increased susceptibility to bacterial infection in mice lacking glucose-6-phosphatase-β J Clin Invest. 2007;117:784–793. [PMC free article] [PubMed] [Google Scholar]
6. Kim SY, Jun HS, Mead PA, Mansfield BC, Chou JY. Neutrophil stress and apoptosis underlie myeloid dysfunction in glycogen storage disease type Ib. Blood. 2008;111:5704–5711. [PMC free article] [PubMed] [Google Scholar]
7. Pan CJ, Lin B, Chou JY. Transmembrane topology of human Glucose-6-phosphate transporter. J Biol Chem. 1999;274:13865–13869. [PubMed] [Google Scholar]
8. Hoffman K, Stoffel W. TMbase – a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler. 1993;347:166–170. [Google Scholar]
9. Gerin I, Veiga-da-Cunha M, Achouri Y, Collet J-F, Van Schaftingen E. Sequence of a putative glucose-6-phosphate translocase, mutated in glycogen storage disease type 1b. FEBS Lett. 1997;419:235–238. [PubMed] [Google Scholar]
10. Pao SS, Paulsen IT, Saier MH., Jr Major facilitator superfamily. Microbiol Mol Biol Rev. 1998;62:1–34. [PMC free article] [PubMed] [Google Scholar]
11. Goldrick D, Yu GQ, Jiang SQ, Hong JS. Nucleotide sequence and transcription start point of the phosphoglycerate transporter gene of Salmonella typhimurium. J Bacteriol. 1988;179:3421–3426. [PMC free article] [PubMed] [Google Scholar]
12. Maloney PC, Ambudkar SV, Anatharam V, Sonna LA, Varadhachary A. Anion-exchange mechanisms in bacteria. Microbiol Rev. 1990;54:1–17. [PMC free article] [PubMed] [Google Scholar]
13. Ambudkar SV, Larson TJ, Maloney PC. Reconstitution of sugar phosphate transport systems of Escherichia coli. J Biol Chem. 1986;261:9083–9086. [PubMed] [Google Scholar]
14. Chen SY, Pan CJ, Krishnamachary N, Mansfield BC, Ambudkar SV, Chou JY. The Glucose-6-phosphate transporter is a phosphate-linked antiporter deficient in glycogen storage disease type Ib and Ic. FASEB J. 2008;22:2206–2213. [PubMed] [Google Scholar]
15. Fann MC, Davies AH, Varadhachary A, Kuroda T, Sevier C, Tsuchiya T, Maloney PC. Identification of two essential arginine residues in UhpT, the sugar phosphate antiporter of Escherichia coli. Membrane Biol. 1998;164:187–195. [PubMed] [Google Scholar]
16. Hall JA, Fann MCPC. Maloney, altered substrate selectivity in a mutant of an intrahelical salt bridge in UhpT, the sugar phosphate carrier of Escherichia coli. J Biol Chem. 1999;274:6148–6153. [PubMed] [Google Scholar]
17. Lemieux MJ, Song J, Kim MJ, Huang Y, Villa A, Auer M, Li XD, Wang DN. Three-dimensional crystallization of the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Protein Sci. 2003;12:2748–2756. [PMC free article] [PubMed] [Google Scholar]
18. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science. 2003;301:616–620. [PubMed] [Google Scholar]
19. Almqvist J, Huang Y, Hovm?ller S, Wang DN. Homology modeling of the human microsomal glucose 6-phosphate transporter explains the mutations that cause the glycogen storage disease type Ib. Biochemistry. 2004;43:9289–9297. [PubMed] [Google Scholar]
20. Chen LY, Pan CJ, Shieh JJ, Chou JY. Structure-function analysis of the glucose-6-phosphate transporter deficient in glycogen storage disease type Ib. Hum Mol Genet. 2002;11:3199–3207. [PubMed] [Google Scholar]
21. Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML. Construction of adenovirus vectors through Cre-lox recombination. J Virol. 1997;71:1842–1849. [PMC free article] [PubMed] [Google Scholar]
22. Ghosh A, Shieh JJ, Pan CJ, Sun MS, Chou JY. The catalytic center of glucose-6-phosphatase: His176 is the nucleophile forming the phosphohistidine-enzyme intermediate during catalysis. J Biol Chem. 2002;277:32837–32842. [PubMed] [Google Scholar]
23. Berteloot A, Vidal H, van de Werve G. Evidence for a membrane exchangeable glucose pool in the functioning of rat liver glucose-6-phosphatase. J Biol Chem. 1991;266:5497–5507. [PubMed] [Google Scholar]
24. Schaffner W, Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973;56:502–514. [PubMed] [Google Scholar]
25. Ambudkar SV, Zlotnick GW, Rosen BP. Calcium efflux from Escherichia coli. Evidence for two systems. J Biol Chem. 1984;259:6142–6146. [PubMed] [Google Scholar]
26. Nordlie RC, Sukalski KA. Multifunctional glucose-6-phosphatase: a critical review. In: Martonosi AN, editor. The Enzymes of Biological Membranes. 2. Plenum Press; New York: 1985. pp. 349–398. [Google Scholar]
27. Parodi AJ. Protein glucosylation and its role in protein folding. Annu Rev Biochem. 2000;69:69–93. [PubMed] [Google Scholar]
28. Goder V, Spiess M. Topogenesis of membrane proteins: determinants and dynamics. FEBS Lett. 2001;504:87–93. [PubMed] [Google Scholar]
29. Molinari M. N-glycan structure dictates extension of protein folding or onset of disposal. Nat Chem Biol. 2007;3:313–320. [PubMed] [Google Scholar]
30. Caramelo JJ, Parodi AJ. How sugars convey information on protein conformation in the endoplasmic reticulum. Semin Cell Dev Biol. 2007;18:732–742. [PMC free article] [PubMed] [Google Scholar]
大阎知道自己没有case,只是想蒙混大家,自以为很聪明,其实很可笑。本来大家都觉得他在Cell和PNAS上发文很了不起的,可经他这一折腾,把自己搞成了一个很无赖的痞子了。
我是觉得小颜的文章讲得再清楚,老阎也不会罢手. 不能指望:
1. 他的粉丝会虚心学习能看懂小颜文章的基础知识.
2. 他的粉丝会去看并看懂小颜的文章的科普.
3. 就算他们看懂了,也不会认账.
有粉丝团的支持与起哄, 老阎不会罢手.
其实,老阎如果为自己好,就真的该忘了这件事,贴他旅游的文章.
给你一点Perspective
1. 1966那篇论文是用钠离子的转运*举个例子*, 不是说只适用于钠离子.
2. 1966到1992年, 有大量的动力学实验支持1966. 其中1973年一文就是专门讲葡萄糖转运.
3. 老阎与颜宁的工作不是平行的, 结果差得很多. 这个从Mueckler的引文可以看出.
他从1999到2009用了老阎的方法做与小颜同一个蛋白, 做了完整的研究(阎只做了1/12), 发了12篇文章. 1999年两篇引了老阎的. 2004 就不引了.
要说与小颜的工作谁更接近, 是Mueckler, 比老阎更完备也是Mueckler. 但是Mueckler的成果跟小颜的比耶差远了(历史局限). 被引, 诺奖的Mueckler排不上,老阎更排不上.
隧道这个我们昨天已经说过,和你说的这个基本上相似,不知你为什么要重复。
还有,没有谁否认大阎的发现和功劳,其实开始的时候,大家都很佩服他的,可惜他后来一直无理污蔑小颜剽窃,把自己搞成了一个人品很有问题的人,不得不说是一个遗憾。人不仅要有才,能够,有成就,还要有人品。如果没有后者,再多其它的也没有用。
虽然,葡萄糖转运蛋白的来源不同,但是用来做的生化实验是一样的。
就是老阎用的桃子。颜宁用的橘子。都是用来研究怎样把它们转运到细胞膜的对面去。然后,老阎发现了一个通道。打开一个门,桃子进去,把门关上。另外一侧在打开一个门,把桃子放出去。我们根据你的解释称其为第10通道.
颜宁也发现一个一个通道。也是把门打开,桃子进去。门关上。桃子送到对面。这个成为第40通道。不同的是,颜宁的工作更细致,因为她不仅发现了这个通道。还测量出了通道的高,宽,和角度。
其实这个通道的说法,在1966年就有人提出。但是这个人1966年提出来的时候,不是用在葡萄糖转运蛋白机理上。但是这个通道也在细胞膜上。也是运来转运物质的。只是那时候,只知道这个通道用来转运Na离子。
后来有人使用这个概念研究了葡萄糖的转运机理。但是都在老阎以后?还是在老阎以前?老阎和颜宁不是唯二的。
到此为止,可以给个结论了。老阎和颜宁的研究是平行的。结果是一样的。是互为支持的。但是,颜宁的工作更漂亮。证据更直接。
再以此来推出,如果葡萄糖蛋白转运机理的研究,未来某一天获得诺贝奖的话。老阎和颜宁都有份的。当然还有其他人。只不过颜宁的分量大。
颜宁如果继续在葡萄糖蛋白转运机理继续研究下去。把它论文里提到的那些还没搞明白的东西都做出来。慢慢的,老阎就和其他人一样成了真正的人梯。如果,颜宁就此罢手,去做其他的。因为颜宁的强项在结构。她可以选择任何其他方向。或者任何其他蛋白。也可以借鉴任何其他的机理模型。不一定非要在葡萄糖转运蛋白这一棵树上。也就是说,是只做一个领域,或者遍地开花的问题。至少可以多做几个方向。