很不幸的事实是,概率论基本上没有好的中文教材(1998之前,之后我就不清楚了),
Ross的书适合本科和硕士生,胜在例子详尽,
Billingsley的概率论和弱收敛的两本教材是非常好的入门书,
chung的概率论教材很严格,读起来会有点累,
如果你真的想理解概率论,feller的两本书是不可不读的,可以说,从高中水平到博士以上学位的读者,都会从中获益---如果要推选概率论里面最有影响的教材,feller的书无可比拟,
Breiman的书也是经典,概率味比chung的浓,
loeve的书可以作为工具书使用。
2. 随机分析
黄志远的随机分析入门是一本很好的书,
严加安的鞅论可以做工具书用,
Ross的Inrto to probability model可以做本科生随机过程入门,例子很多,
Karlin & Taylor的两本书非常适合硕士生用,
resnick的书概率味很不错,
oksendal的书是SDE里面最简单的,
Karatzas Shreve有好几本书,金融数学的博士不可不读,
Revuz Yor的连续鞅是很好的书,
Protter的书是严格随机分析里面最容易读的,文笔很好,
williams的书深入浅出,入门很合适,
Chung Williams的书比oksendal稍微难一点,作为应用随机分析的标准教材很不错。
3. 前面两个清单是概率类的,但它们是远远不够的
如果你是数学/物理/计算机博士,而希望去华尔街工作,你会有什么样的机会呢?首先,期望不要太高,举个例子,一个Columbia大学的Associate Prof,做金融工程的(大概比国内大部分"牛人"做的还要好一点),最近跳到了Hedge Fund,也不得不从entry level做起,原由很简单: You have potential, BUT You Don't Know Nothing yet!另外,投行三大业务:underwriting, M&A, trading,做数理的基本和前两项无缘.
数理出身的人在华尔街去向主要是quant(may lead to a trader position in the future, 最好成绩是成为star trader 或head quant). Quant可以是前台,中台,后台.一般说来,前台是最重要的工作,风险也大,risk management和model validation风险小,但bonus也少,属于技术员
还需要什么呢?
数理方面:
统计,特别是时间序列
计算代数,
数值算法
偏微(parabolic and elliptic)
控制论
金融方面:
就要看你想向什么方向走了,大致上有
1. Fixed income
2. Equity
3. Exotic Derivative
4. Credit Derivative
5. Commodity and FX
另外还需要计算机的知识
可以这么说,没有人在所有这些方面都是专家,我以后会在我知道一点的方向列一些书单,但一定要记住,即使把所有这些书都读透了,离成为一个专家还是很远,因为金融毕竟远远不仅仅是模型.当然,如果你选择教书,即使你只懂偏微,你也可以号称自己是金融界数学专家了,呵呵。
4. 控制论
控制论在portfolio selection problem和risk management里面有很多的应用,optimal stopping在美式derivative非常重要
金融数学里面用的主要是随机控制,和粘性解(因为operator is often degenerate)
经典的随机控制书是
1.FLEMING and RISHEL, (1975) Deterministic and Stochastic Optimal Control.
2.KRYLOV, (1980) Controlled diffusion processes
3.BORKAR, (1989) Optimal control of diffusion processes.
4.BENSOUSSAN and LIONS, (1982) Controle Impulsionnel et Inequations Variationnelles
粘性解的标准文献是
1. Crandall, Ishii and Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992),
2.Fleming and Soner, Controlled Markov Processes and Viscosity Solutions, 1992.
5.数值算法
首先,finite difference是极其常用的算法,这方面书籍很多,比如Ames...
计算矩阵: Golub and Van Loan, Matrix Computations, 1996
Kushner and Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, 1992. Kushner's Markov chain approximation method是控制论里最有用的算法
ROGERS and TALAY, Numerical Methods in Financial Mathematics. 1997.论文集
Kloeden and Platen, Numerical Solution of Stochastic Differential Equations, 1997. 偏理论,实用性差一点
Glasserman, Monte Carlo Methods in Financial Engineering, 2003这本书非常非常实用,可以说是金融数学数值算法的最新经典
?
6-时间序列
A Guide to Econometrics: by Peter Kennedy可能是最通俗易懂的入门书
Econometric Analysis,by William H. Greene和Time Series Analysisby James Douglas Hamilton是非常标准的教材,许多学校都在用
Box Jerkins的Time Series Analysis: Forecasting & Control,当之无愧的经典
Time Series and Dynamic Models by Christian Gourieroux,Gourieroux写了许多书,但似乎他的书不如他的研究文章水准高
The Econometrics of Financial Markets,by John Y. Campbell, Andrew W. Lo, A. Craig MacKinlay,新经典啦.
美国学校内金融数学专业:核心课程和课本介绍
(Core Course Abstracts)
Ideas and techniques of numerical analysis illustrated by problems in the approximation of functions, numerical solution of linear and nonlinear systems of equations, approximation of matrix eigenvalues and eigenvectors, numerical quadrature, and numerical solution of ordinary differential equations.
Textbook: A. Quarteroni, R. Sacco, and F. Saleri: Numerical Mathematics, 2nd edition, Springer, 2004
Continuation of Numerical Analysis I.
Textbook: A. Quarteroni, R. Sacco, and F. Saleri: Numerical Mathematics, 2nd edition, Springer, 2004
Numerical Solution of Partial Differential Equations
Finite-difference schemes, investigating stability and convergence, other methods such as those of Ritz-Galerkin type and collocation.
Introduction to stochastic partial differential equations and extreme value theory. Applications to risk analysis and pricing financial securities, such as options and derivatives.
Textbook: S. E. Shreve, Stochastic calculus and Finance II: Continuous-time finance, Springer, 2004
Continuation of Financial Mathematics I. Topics covered include the solution of stochastic differential equations as Markov processes, option pricing via partial differential equations, analysis of exotic options, local and stochastic volatility models, American options, interest rate and term structure models, and application of Lévy (jump) processes to financial models.
Textbook: S. E. Shreve, Stochastic calculus and Finance II: Continuous-time finance, Springer, 2004
Regression Analysis
Review of basic statistical theory and matrix algebra; general regression models, computer application to regression techniques, residual analysis, selection of regression models, response surface methodology, nonlinear regression models, experimental design models, analysis of covariance. Emphasis on applications and many illustrative examples.
Textbook: Applied Linear Regression Models, Kutner et al., McGraw Hill, 4th edition
Model based forecasting methods, autoregressive and moving average models, ARIMA, ARMAX, ARCH, state-space models, estimation, forecasting and model validation, missing data, irregularly spaced time series, parametric and non-parametric bootstrap methods for time series, multi-resolution analysis of spatial and time series signals, time-varying models and wavelets.
Textbook: Intro to Time Series & Forecasting, Brockwell, Springer-Verlag
Theory of point and interval estimation and hypothesis testing. Topics include sufficiency, unbiasedness, and power functions. Emphasis is on application of the theory in the development of statistical procedures.
Textbook: Probability & Statistics, DeGroot, Prentice Hall, 3rd edition
Modern methods of data analysis with an emphasis on statistical computing. Topics include univariate statistics, data visualization, linear models, generalized linear models (GLM), multivariate analysis and clustering methods, tree-based methods, and robust statistics. Expect to use statistical software packages, such as SAS (or SPSS) and Splus (or R) in data analysis.
Textbook: Statistical Consulting, Cabrera/McDougall, Springer-Verlag